Patch-Level Spatial Layout for Classification and Weakly Supervised Localization

نویسندگان

  • Valentina Zadrija
  • Josip Krapac
  • Jakob J. Verbeek
  • Sinisa Segvic
چکیده

We propose a discriminative patch-level spatial layout model suitable for training with weak supervision. We start from a block-sparse model of patch appearance based on the normalized Fisher vector representation. The appearance model is responsible for i) selecting a discriminative subset of visual words, and ii) identifying distinctive patches assigned to the selected subset. These patches are further filtered by a sparse spatial model operating on a novel representation of pairwise patch layout. We have evaluated the proposed pipeline in image classification and weakly supervised localization experiments on a public traffic sign dataset. The results show significant advantage of the proposed spatial model over state of the art appearance models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep patch learning for weakly supervised object classification and discovery

Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background. Many existing methods usually require fine-grained supervisions (e.g., bounding-box annotations) to learn patch features, which requires a great effort to label images may limit their potential applications. In this ...

متن کامل

Self-Transfer Learning for Fully Weakly Supervised Object Localization

Recent advances of deep learning have achieved remarkable performances in various challenging computer vision tasks. Especially in object localization, deep convolutional neural networks outperform traditional approaches based on extraction of data/task-driven features instead of handcrafted features. Although location information of regionof-interests (ROIs) gives good prior for object localiz...

متن کامل

Weakly Supervised Object Localization with Large Fisher Vectors

We propose a novel method for learning object localization models in a weakly supervised manner, by employing images annotated with object class labels but not with object locations. Given an image, the learned model predicts both the presence of the object class in the image and the bounding box that determines the object location. The main ingredients of our method are a large Fisher vector r...

متن کامل

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly...

متن کامل

Weakly Supervised Localization Using Deep Feature Maps

Object localization is an important computer vision problem with a variety of applications. The lack of large scale object-level annotations and the relative abundance of image-level labels makes a compelling case for weak supervision in the object localization task. Deep Convolutional Neural Networks are a class of state-of-the-art methods for the related problem of object recognition. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015